IIT Mandi Research Team Develops Simple Models To Understand Polymer Looping

IIT Mandi Research Team Develops Simple Models To Understand Polymer Looping

IIT Mandi researcher Moumita Ganguly explaining her work on Polymer looping


NEW DELHI: IIT Mandi researchers have developed simple models to understand polymer looping processes. The theoretical models developed by the researchers will help in understanding the fundamental aspects of end looping mechanism in polymeric systems.

Polymers are ubiquitous in the world – including humans, who are a collection of various types of polymers, all that one eats, touches, feels and uses are polymers of one kind or another.

A research team led by Dr. Aniruddha Chakraborty, who is Associate Professor at the School of Basic Sciences at IIT Mandi, is working in cutting-edge fields of Quantum and Statistical Mechanics and uses theoretical approaches to understand complex and critical chemical phenomena. His recent study has been published in the International Journal, Chemical Physics Letters.

Ms. Moumita Ganguly. who is the corresponding author of Dr. Chakraborty’s paper, explained, “Polymers are not all isolated snake-like molecules thrown in together; they are often twisted, interconnected, overlapped and looped together in various forms, which give them their functionalities and uniqueness. Our approach will help us not only understand the importance of looping in biological processes but also assist in the development of nano-devices and molecular machines using polymers.”

End looping – contacts between ends of long polymers – is particularly rampant and important to biological polymers. The looping of our genetic polymer, DNA, is imperative to its function as carriers of our blueprint, and amino acids, the building blocks of proteins, must loop in order to serve the functions they are meant to serve.

While looping has been experimentally observed for a long time, the mechanisms of looping, including the speed at which they loop and rates of chemical reactions involving looped polymers have been difficult to understand because of the complexity and large size scales of these molecules. Computer simulations are extensively used in chemistry to understand how reactions proceed, but these are difficult in the case of looped polymers.